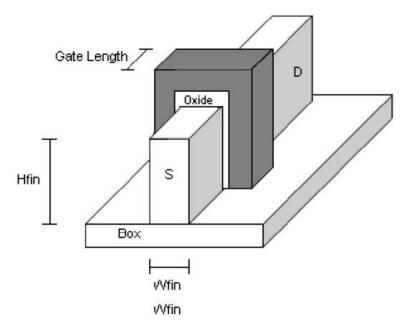

Propriétés optiques

- Les processus optiques
- Les coefficients optiques
- Index de réfraction complexe
- Réflectivité d'une plasma
- Lien entre propriétés optique et électrique dans les métaux

Exercice (1 semaine)


Voici le dessin d'un finFET (FET = field effect transistor ou transistor à effet de champ). C'est la base de la fabrication des dispositifs semi-conducteurs nanoélectroniques modernes. Les microprocesseurs utilisant des grilles FinFET ont été commercialisés pour la première fois dans la première moitié des années 2010, et sont devenus le design de grille dominant pour les nœuds technologiques de 14 nm, 10 nm et 7 nm.

Le FinFET est composé de deux contacts métalliques (source, S, et drain, D), d'un canal semi-conducteur au milieu, d'un diélectrique au-dessus, couvert par un troisième contact métallique (gate). Le gate agit comme un condensateur pour accumuler des charges à l'interface avec le canal. La même quantité de charge sont donc injecté dans le canal.

Questions:

- 1. Quelles est la géométrie idéal pour profiter aux maximum du diélectrique? Quelles dimensions (épaisseur, largeur, longueur) sont d'intérêt?
- 2. Choisissez 2 matériaux idéal pour cette application entre les suivants:
- Au Cu Si SiO₂ TiO₂ H₂O HfO₂ Al₂O₃
- 3. En utilisant ces matériaux, combien d'électrons sont injecté dans le canal avec un potentiel de gate de 1V pour si le diélectrique a une géométrie cubique avec coté de 14 nm?

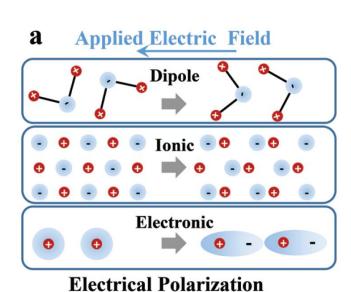
Solutions

Questions:

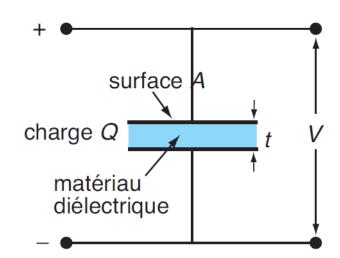
1. Quelles est la géométrie idéal pour profiter aux maximum du diélectrique? Quelles dimensions (épaisseur, largeur, longueur) sont d'intérêt?

$$D = rac{Q}{A} = \ \epsilon * E = \epsilon rac{V}{t}$$
 Un épaisseur plus petit, plus de charge déplacé.

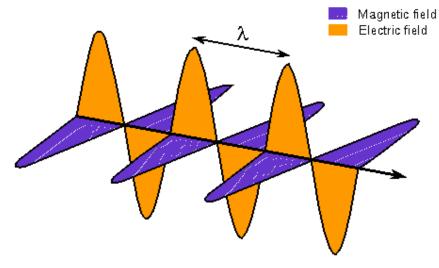
Choisissez 2 matériaux idéal pour cette application entre les suivants:


Mat	Au	Cu	Si	SiO ₂	TiO ₂	H ₂ O	HfO ₂	Al ₂ O ₃
ε _r	∞	∞	11.8	3.9	80	81	25	9

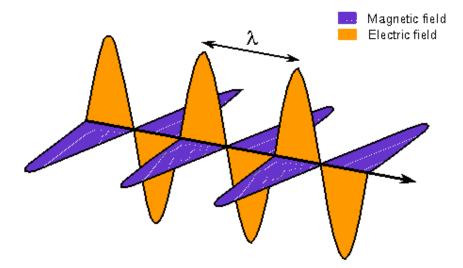
En utilisant ces matériaux, combien d'électrons sont injecté dans le canal avec un potentiel de gate de 1V pour si le diélectrique a une géométrie cubique avec coté de 14 nm?


Mat	Si	SiO ₂	TiO ₂	H ₂ O	HfO ₂	Al ₂ O ₃
ε _r	11.8	3.9	80	81	25	9
e ⁻	X	3	X	X	19	7
N (cm ⁻³)	X	1.1*10 ¹⁸	X	X	7*10 ¹⁸	2.5*10 ¹⁸

En considérant V_{diel} = V_{canal}


Le cours de la semaine passée en bref

Polarisation



Constant diélectrique

Introduction lumière

Description classique de la lumière

Equations d'onde généralisé (dérivé par les équations de Maxwell):

$$\nabla^2 \vec{E} = \mu \varepsilon \, \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\nabla^2 \vec{B} = \mu \varepsilon \frac{\partial^2 \vec{B}}{\partial t^2}$$

Ou ϵ est la permittivité électrique et μ est la perméabilité magnétique du milieu

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

$$\mu = \mu_0 \mu_r$$

La vitesse de la lumière dans le vide est:

$$c^2 = \frac{1}{\varepsilon_0 \mu_0}$$

Vitesse de la lumière dans le vide c = 300 000 km/s

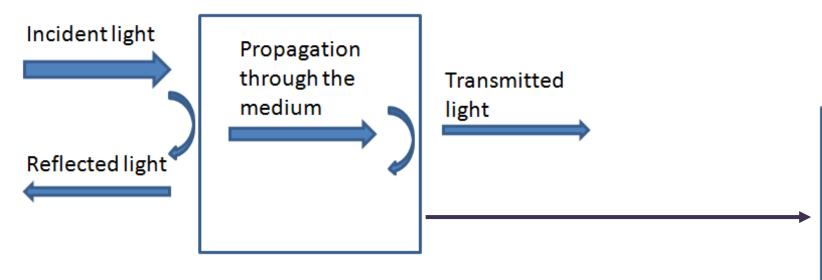
Champ électrique oscillant dans le vide:

$$\vec{E}(\vec{r}, t) = \overrightarrow{E_0} \exp[i(\vec{k} \cdot \vec{r} - \omega t)]$$

Ou
$$\overrightarrow{E_0}$$
 est l'amplitude du champ \overrightarrow{k} est le vecteur d'onde ω est la fréquence angulaire d'onde

Champ électrique oscillant dans le vide en 1D:

$$\boldsymbol{E}(\boldsymbol{z}, \boldsymbol{t}) = E_0 \exp i(kz - \omega t)$$


Ou
$$\mathbf{v} = \mathbf{c} = \frac{\omega}{k}$$
 et $\mathbf{k} = \frac{2\pi}{\lambda}$ et $\omega = 2\pi \mathbf{v}$

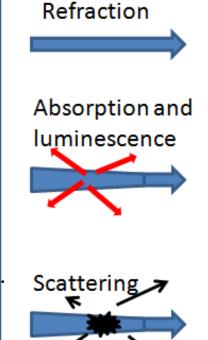
Vitesse de la lumière

Longueur d'onde de la lumière

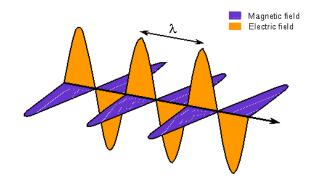
Fréquence de la lumière

Les processus optiques

Coefficients optiques:


On peut quantifier les phénomènes à l'interface optique un certain nombre de coefficients qui caractérisent les matériaux.

 I_o , I_r , et I_t sont respectivement l'intensité de lumière incidente, réfléchie et transmise.


Coefficient de transmission T et de réflexion R:

$$R = \frac{I_r}{I_0}$$
 et $T = \frac{I_t}{I_0}$ \rightarrow $R + T = 1$

Dans le milieu

L'index de réfraction

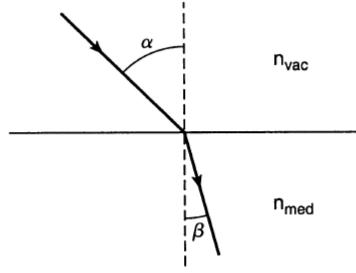
Réfraction: Elle fait référence à la propagation de la lumière dans la matière et à la correspondante réduction de vitesse de propagation. La réfraction en elle-même ne diminue pas l'intensité de la lumière.

Les ondes électromagnétiques ne peuvent pas se propager à la même vitesse dans le vide que dans un matériau. En fait, elles s'y propagent plus lentement.

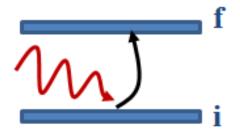
La vitesse de la lumière, v, dans un matériau est donnée par l'expression :

$$v = \frac{c}{n}$$

$$n = \frac{c}{v} = c * \frac{k}{\omega} \propto \frac{1}{\lambda}$$


ou n est l'index de réfraction

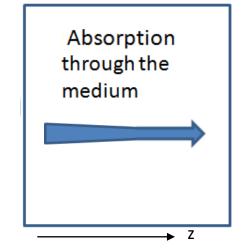
Loi de Snell


Lorsque la lumière passe d'un milieu optiquement « mince » à un milieu optiquement dense, on observe que, dans le milieu dense, l'angle de réfraction, β (c'està-dire l'angle entre le faisceau de lumière réfractée et une ligne perpendiculaire à la surface), est généralement plus petit que l'angle d'incidence.

La relation géométrique entre les angles et les indexes de réfraction est:

$$\frac{\sin\alpha}{\sin\beta} = \frac{n_{milieu}}{n_{vac}} = n \qquad car \ est \ a$$

L'absorption de la lumière

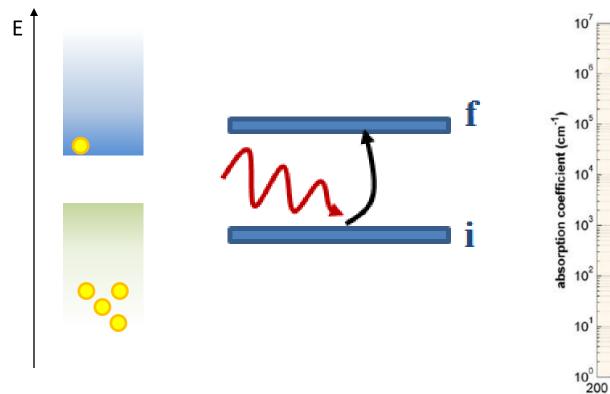


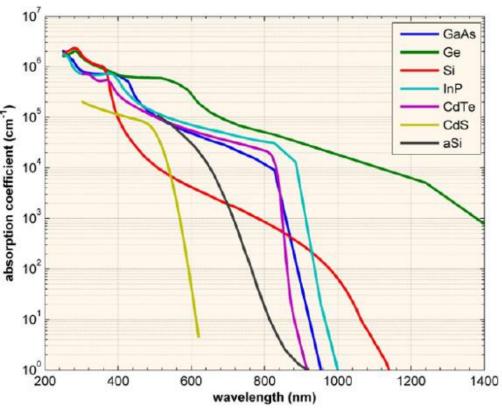
Exemple: Excitation d'un électron entre deux niveaux par la lumière.

Absorption: Elle fait référence à la perte d'intensité lumineuse lors de sa propagation. Elle a lieu quand l'énergie de la lumière entre en résonnance avec une transition dans le matériau. Les particules excitées peuvent être des électrons mais aussi d'autre type de 'particules' comme les vibrations entre les atomes.

L'absorption de la lumière est caractérisée par le coefficient d'absorption α . Ce coefficient est défini par la fraction de puissance absorbée par unité de longueur.

Imaginons un faisceau qui se propage en direction z et que l'intensité (puissance par unité de surface) à la position z est I(z):




$$\frac{dI(z)}{dz} = -\alpha I(z)$$

$$I(z) = I_0 e^{-\alpha z}$$

Equation de Lambert-Beer

Exemple: L'absorption dans le semiconducteurs

La diffusion de la lumière

Diffusion: Il s'agit du phénomène pour lequel la lumière change de direction et parfois aussi de fréquence après avoir interagit avec le matériau. Le nombre total de photons ne change pas, mais le nombre de photons qui avance dans la direction incidente diminue.

$$I(z) = I_0 e^{-N\sigma_S z}$$

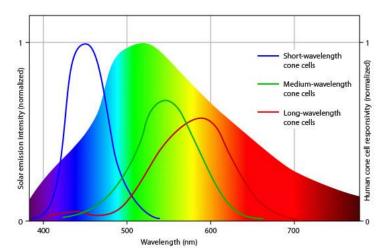
où N et le nombre de centres de diffusion par unité de volume et σ_s est la section transverse de diffusion.

La diffusion de la lumière dans un matériau est le résultat de la variation de l'index de réfraction, dans des échelles plus petites que la longueur d'onde λ . Elle est due à la présence d'impuretés, défauts et inhomogénéités. La diffusion a comme conséquence la diminution de l'intensive lumineuse de façon similaire à l'absorption. Lors de sa propagation dans le matériau, l'intensité de la lumière décroit de façon exponentielle :

Quand le centre de diffusion est beaucoup plus petit que la longueur d'onde, la section transverse de diffusion prend cette forme

$$\sigma_s = \frac{1}{\lambda^4}$$

ceci veut dire que ce sont plutôt les petites longueurs d'onde qui sont diffusées.


Exemple: La diffusion de Reyleigh

$$\sigma_S = \frac{1}{\lambda^4}$$

$$\lambda = 700 \text{ nm}$$

$$\lambda = 400 \text{ nm}$$

La diffusion de Rayleigh est due aux molécules gazeuses présentes dans l'atmosphère $(O_2, N_2, CO_2, vapeur d'eau, etc.)$ ou aux fines particules de poussière. Par conséquent, c'est un phénomène sélectif qui se produit surtout pour les longueurs d'onde les plus courtes du spectre (violet, bleu).

Pause (5 minutes)

Index de réfraction complexe

Il est possible de regrouper les phénomènes de réfraction et d'absorption dans un même coefficient afin de décrire de façon complète la propagation de la lumière dans un milieu. Ceci est fait à travers de l'utilisation d'un **index de réfraction complexe** de la forme :

$$\dot{n} = n + i\kappa$$

Index de refraction

Coefficient d'extinction

En considerant la dependence spatio-temporelle de l'amplitude du champ électrique:

$$E(z, t) = E_0 \exp i(kz - \omega t)$$

On peut déterminer l'amplitude du champ électrique avec les modifications suivants.

Dans un milieu non-absorbant:

Dans un milieu absorbant:

$$c = \frac{\omega n}{k} \rightarrow k = n \frac{c}{\omega}$$

$$c = \frac{\omega \check{n}}{\check{k}} \rightarrow \check{k} = (n + i\kappa) \frac{c}{\omega}$$

Index de réfraction complexe

La propogation du champ electrique dans un milieu absorbant:

$$\boldsymbol{E}(\boldsymbol{z},\boldsymbol{t}) = E_0 \exp i(kz - \omega t)$$

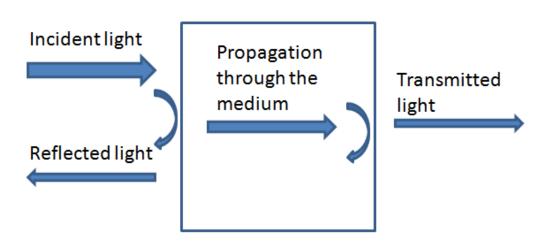
$$E(z, t) = E_0 \exp i \left[\left(\frac{nc}{\omega} z + i \frac{\kappa c}{\omega} z - \omega t \right) \right]$$

$$\boldsymbol{E}(\boldsymbol{z}, \boldsymbol{t}) = E_0 \exp\left[-\frac{\kappa c}{\omega}z\right] \exp i(kz - \omega t)$$

En considérant que l'intensité de la lumière est

$$I(z) = |E(z, t)|^2$$

$$I(z) = E_0^2 * \exp\left(-\frac{2\kappa c}{\omega}z\right)$$


$$I(\mathbf{z}) = E_0^2 * \exp(-\alpha z)$$

ou
$$\alpha = \frac{2\kappa c}{\omega}$$
 est le coefficient d'absorption

Exercice (5 minutes)

Déduire la relation avec la constant diélectrique d'un matériau (pas magnétique) et son index de réfraction à partir de la définition de la vitesse de la lumière

Réflectivité et index de réfraction

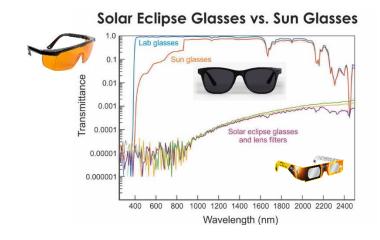
$$R = \left| \frac{\check{n} - 1}{\check{n} + 1} \right| = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$

Equation de Beer

La réflectivité d'un matériau varie avec:

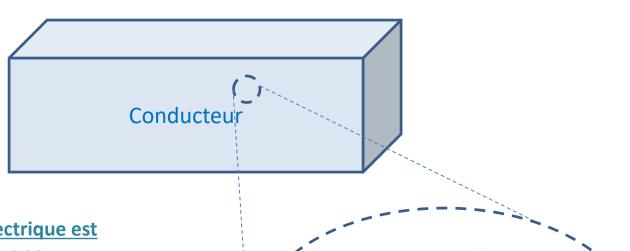
- l'index de réfraction réel (= propagation dans le milieu)
- Le coefficient d'extinction (= absorption de la lumière)

Coefficient de transmission T et de réflexion R:


$$R = \frac{I_r}{I_0}$$
 et $T = \frac{I_t}{I_0} \rightarrow R + T = 1$

Silica Atmospheric windows (3-5 μm; 8-12 μm)

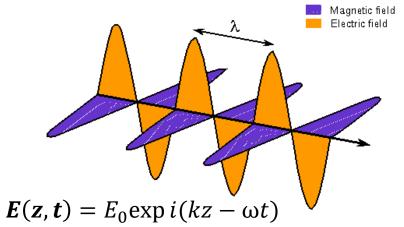
Sulfide Selenide 40


20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 wavelength (μm)

Donc la réflectivité et la transmission sont fonction de la longueur d'onde!

Vision atomistique de propriétés optiques: Modelé de Drude-Lorentz



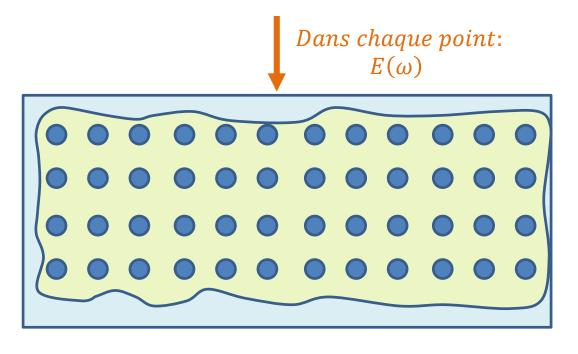
« Le courant électrique est transporté par un gaz d'électrons ou plasma »

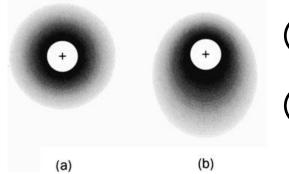
Modèle de mouvement des électron par la Loi de Newton modifié

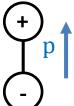
$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -e * E$$

ou γ est la constant d' atténuation d'un milieu visqueux

Interaction lumière/plasma


$$\begin{cases}
m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -e * E \\
E(\omega) = E_0 \exp(-i\omega t)
\end{cases}$$




Les charges oscillent dans le temps
$$x(\omega) = x_0 \exp(-i\omega t)$$
 Les charges oscillent dans le temps
$$x_0 = -\frac{eE_0}{m} * \frac{1}{\omega^2 - i\gamma\omega}$$
 L'amplitude d'oscillation est lié à la fréquence angulaire et la «friction» du milieu

Les charges oscillent dans

«friction» du milieu

L'oscillation de charge est associé à la polarisation du matériau:

$$P(\omega) = N * e * \Delta x = N * e * \left(-\frac{eE(\omega)}{m} * \frac{1}{\omega^2 - i\gamma\omega}\right)$$

Réflectivité d'un plasma

$$\begin{cases} P(\omega) = N * e * \Delta x = -\frac{Ne^2 E(\omega)}{m} * \frac{1}{\omega^2 - i\gamma\omega} \\ D(\omega) = \varepsilon_0 * E(\omega) + P(\omega) = \varepsilon_0 * \varepsilon_r * E(\omega) \end{cases} \qquad \varepsilon_r = 1 - \frac{Ne^2}{m\varepsilon_0} * \frac{1}{\omega^2 - i\gamma\omega}$$

$$\varepsilon_r = 1 - \frac{Ne^2}{m\varepsilon_0} * \frac{1}{\omega^2 - i\gamma\omega} \qquad ou \omega_p = \sqrt{\frac{Ne^2}{m\varepsilon_0}}$$

$$\varepsilon_{r} = 1 - \frac{1}{m\varepsilon_{0}} * \frac{1}{\omega^{2} - i\gamma\omega}$$

$$\varepsilon_{r} = 1 - \frac{\omega_{p}^{2}}{\omega^{2} - i\gamma\omega} \qquad ou \omega_{p} = \sqrt{\frac{Ne^{2}}{m\varepsilon_{0}}}$$

Fréquence du plasma

Exercice (10 minutes)

$$\varepsilon_r = 1 - \frac{\omega_p^2}{\omega^2 - i\gamma\omega} \quad ou \; \boldsymbol{\omega_p} = \sqrt{\frac{Ne^2}{m\varepsilon_0}}$$

$$\widetilde{\varepsilon_r} = \check{\mathbf{n}}^2$$

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$

$$\widetilde{\varepsilon_r} = \check{n}^2$$

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$

Décrire la réflectivité en fonction de ω/ω_p dans le cas d'un milieu non-absorbant ($\kappa = 0, \varepsilon_r = \sqrt{n}$)